The hands-on class begins by challenging student teams to reverse engineer a commercially available product. After analyzing its components, structure, and functionality, students begin the process of engineering something new. Teams sit down with a client-facing a problem then develop a solution, which they refine until the final presentation. Students are developing prototypes for products ranging from air quality monitors and woodpecker deterrents to highly niche products.
One project, from the Perkins School for the Blind, challenged students to create a tape dispenser with the blind community in mind. After rounds of interviews and iterations, the team developed a tape dispenser that automatically cuts tape strips, resulting in easier use by people with blindness.
Because of the nature of the class, 3D printing is an instrumental part of the process. Each team has a mix of students, whose engineering skills and educational background vary greatly. “About 25% of students in this class haven’t used a screwdriver before, while others have done robotics. Some have their own 3D printers at home. We really have the full spectrum,” said Aleks Zosuls, research engineer, instructor, and lecturer at Boston University. “3D printing allows students to iterate quickly, and learn the skills needed to prototype their designs.”